Starting from K(0):
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
Using our translation table for C
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
We are left with C(0)
0 1 1 1 1 0 1
1 1 0 1 1 0 1
0 1 0 1 1 1 1
1 0 1 1 1 1 1
Translation D
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
1 0 0 0 1 1 1
0 1 1 0 0 1 1
0 0 1 0 0 0 1
1 0 0 0 1 1 1
Rotating C(0) to the left by 1 gives us C(1):
1 1 1 1 0 1 1
1 0 1 1 0 1 0
1 0 1 1 1 1 1
0 1 1 1 1 1 0
This simply moves the first bit to the end of the sequence. If the 4 lines are thought of as a single line, you take the first number and put it at the end, then break down into four lines again.
D(1), thusly, becomes
0 0 0 1 1 1 0
1 1 0 0 1 1 0
0 1 0 0 0 1 1
0 0 0 1 1 1 1
CD(1) is the merging of C(1) and D(1) (the 4 lines from C(1) followed by 4 more lines of D(1))
R 1 2 3 4 5 6 7
1 0 0 0 1 1 1 0
8 1 1 0 0 1 1 0
15 0 1 0 0 0 1 1
22 0 0 0 1 1 1 1
29 1 1 1 1 0 1 1
36 1 0 1 1 0 1 0
43 1 0 1 1 1 1 1
50 0 1 1 1 1 1 0
Using the K conversion table
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
We take the nth field from our CD(1) to define K(1)
0 0 0 0 0 1
0 1 0 1 1 0
0 0 1 1 1 1
1 0 1 1 1 0
1 1 1 0 1 1
1 0 1 1 0 1
0 1 1 0 1 1
1 0 0 1 1 1